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Summary

This report provides an analysis of experimental laser Doppler
velocimétry (LDV) data uncertainties that propagate from measurements in
the tunnel coordinate system to results in the model system. Calculations of
uncertainties as functions of the variables that comprise the final result
requires assessment of the contribution each variable makes. Such an
analysis enables and necessitates the experimentalists to identify and
address the contributing error sources in the experimental measurement
system. This provides an opportunity to improve the quality of data derived
from experimental systems. This is especially important in experiments
where small changes in test conditions are expected to produce small,
detectable changes in results. In addition, the need for high-quality
experimental data for CFD method validation demands a thorough

assessment of experimental uncertainty.

Transforming from one Cartesian coordinate system to another by
three sequential rotations, equations were developed to transform the
variables initially obtained in the original coordinates into variables in the
final coordinate system. Based on the transformation equations, propagation
equations for errors in the experimentally-derived flow quantities were
derived for a model at angle of attack. Experimental uncertainties were
propagated from the tunnel coordinate system into the model system.
Comparisons between results for the two systems revealed a variety of

increases and decreases in bias and precision errors.



Introduction

Changes in experimental test conditions, with expected changes in
test results, require high repeatability of experimental data and estimates of
experimental uncertainties. For example, the validation of computational
fluid dynamics (CFD) methods requires experimental data of high quality
with the best estimates of experimental uncertainties. Laser Doppler
velocimetry (LDV) is frequently used in wind and water tunnels to make
measurements in off-body flow fields. This technique provides accurate
measurements of flow mean and fluctuating velocities from which various
turbulence relationships, e.g., Reynolds normal and shear stresses, can be

calculated.

Many publications of experimental LDV results include an analysis of
expected errors or uncertainty in some form. Several documents are
dedicated specifically to error or uncertainty analysis. References 1 - 3 are
examples of such analyses. Experimental results are often transformed into
coordinate systems other than those in which they were measured. For
example, if one or more of the axes in a multi-axis LDV system are not
congruent with the tunnel axes, the measured quantities must be resolved
into the tunnel system. In addition, if the model being tested is at an angle
relative to the tunnel coordinate system, the measured quantities must also

be transformed into the model coordinate system.

The propagation of experimental uncertainties through the various
coordinate transformations is required to provide accurate estimates of

uncertainties in the final, transformed experimental results. Systematic
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procedures for propagating uncertainty have been described by several
authors. One of the most current references in this area is by Coleman and

Steele (reference 4).

This report addresses the propagation of experimental uncertainties
in LDV flow field measurements from the tunnel coordinate system into the
model coordinate system. The purpose is to provide a systematic way to
transform contributing errors of various calculated flow quantities into final

results.



Symbols and Abbreviations

a A
ANSI
ASME

RSS

tos

U
u,v,w

u,v,w

u,v,w

\[u.z , .\jv.z , \/";-2

u'u,vv,ww'

u'v,vw,wu'

transformation matrix elements

American National Standards Institute

American Society of Mechanical Engineers

transformation matrix elements

bias limit

transformation matrix elements

transformation matrix elements

unit vector

laser doppler velocimetry

number of samples

precision limit, P = tg5S

result in an uncertainty analysis

root-sum-square

precision index

statistical t-distribution value giving 95%
confidence level

uncertainty or velocity, in/sec

total instantaneous velocities, in/sec

mean velocity components, in/sec

instantaneous velocity fluctuations, in/sec

rms velocity fluctuations, in/sec

Reynolds normal stresses, in2/sec?

Reynolds shear stresses, in2/sec?



XY z

subscripts:

By
iorj
ij

J
LDV
Pjj

rms

RSS

X, V, 2

1,2, 3

variable in uncertainty analysis

cartesian coordinates, in

angle of attack, deg

sideslip angle, deg

implies "uncertainty" when preceeding
quantities in uncertainty analysis

Kronecker delta

roll angle, deg

correlation coefficient between

variables in uncertainty analysis

correlation coefficient for bias errors, eq (2)

elemental component

matrix element indices

jet

LDV coordinate system

correlation coefficient for precision errors,
equation (2)

result

root mean square

root-sum-square

tunnel

variable

unit vector axes

free stream condition

intermediate axis systems
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superscripts:

' fluctuating quantity
- mean quantity
- vector

A unit vector

Analysis of Experimental Uncertainties

The concepts of bias and precision errors are the fixed and random
errors, respectively, that occur in experimentation. The bias errors are
fixed, systematic or constant errors that induce an offset from the true value
of the quantity being measured. The precision errors are random variation
or repeatability errors of the quantity being measured. The total uncertainty
is then formed by a combination of a bias limit and a precision error
estimate. The bias limit, B, is an estimated limit "of a confidence interval on
the true value of the bias" (reference 4). The combination technique used in
the present study is the root-sum-square (RSS) method, where the total

uncertainty is given by,

Upgs = (B? + P2)172,

and where B is the bias limit estimate and Px is the precision limit. The

precision limit is the product of the precision index (precision error

estimate) and tgs, the value of t from the statistical t distribution that gives a

95% confidence level to the estimate of the precision (random) error. For =

experimental sample sizes greater than 30, the standard in reference 5
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recommends using a value for tgs of 2 for 95% confidence estimates. The

equation for the total uncertainty becomes,
Upss =[ B2 +(28)* 17, (1)
where S is the precision error estimate or precision index.
Propagation of Uncertainty
Coleman and Steele (reference 4) describe the propagation of

uncertainty in a general uncertainty analysis. If a result, r, is a function of

many variables (x], X2, X3, . . . , Xn), the uncertainty, Uy, in a calculated result

is

1
2 2 21y
or or or 2
U =|{|Zu LIRS U .
) [(axl X'J +(ax2 XQJ ' +(aXN XN):l

The Uy's are the uncertainties in the variables, x;. In a detailed uncertainty
analysis, the bias and precision limit estimates must be propagated
separately. Then the estimates are combined into the total uncertainty
(using the RSS method in this case). If the bias limits (or precision limits) of
the different variables are not independent of each other, there are cross

terms in the expressions for the bias and precision limits as follows.

1=1 j=l



* PRSI S

—

e ki it

ar . Y & or or 2
[(a_x—,P"'J +Z———Px,Px,Pp.,(1—5.,)j” ' (2)

where the p's are correlation coefficients associated with each type of error

and & is one if i = j and zero if i # j. If the error terms are independent (i.e.,
the errors in the measurements of the variables are independent), the cross

terms dissapear (p = O) in equations (2).
The bias' limit for r is ,
1
2 2 27,
Br = in + _a._I:_Bx +... _ar_Bx ,
ox, ™ ox, oxy "
and the precision limit for r is

1
2 2 273
or or or
P =||=P =Zp R :
r Max, x'] +(ax2 xz) i +(axn XN)]

where the Bx's and the Px's are the bias and precision limits for the
measured variables, x;. The equation for the propagated precision error

estimate (precision index) is

where the Sx's are the estimated precision errors in the measured results.



In a data acquisition program, the results for the measurement
instrument may be modified by at least one coordinate transformation to
yield final results. For example, there may be a transformation from the LDV
coordinate system to the tunnel coordinate system, if one or more of the
LDV axes are not aligned with the tunnel axes. Then, if the model is at an
ainglér or angles relative to the tunnel, there is a transformation to the model
coordinate sjstem. Therefore, the uncertainty analySiS is required t.o account
for this transformation. The propagation of the uncertainties into the
calculated results, including coordinate transformation, was carried out in a
manner similar to that used by Neuhart, et al (reference 6), where the
transformation from the LDV coordinate system to the tunnel system was

developed.

The description of the development of the coordinate transformation
equations, from the tunnel to the model coordinate system, are described in
the following section. Next, the method for estimating uncertainties in the
final, transformed results will be shown. Finally, an example calculation is
given to demonstrate the process. Uncertainties in the calculated quantities
from reference 6, in the tunnel coordinate system for a forebody/strake
model at angle of attack, are listed in table 1. The results of propagation of
the uncertainties into the model coordinate system are listed in table 2. The
tabulated results show the propagated precision error estimates (precision
indicies) instead of the precision limit. The total uncértainty, however, does
contain the precision limit, P = tg5S. All quantities calculated were
normalized by appropriate terms, as shown in the tables. Final estimated
uncertainties in table 2 are presented with two significant figure accuracy

since more significant figures would be inappropriate for such estimates.
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Coordinate Transformation

The derivation of the transformation equations follows the
development of Neuhart, et al., (reference 6), which was based on the work
of Morrison, et al, in reference 7. In figure 1, the x-y-z axes shown form the
orthogonal, model coordinate system. The total velocity vector defined in

this system would be

—

U =ue, +ve, +we,,

where the €,, €, €, vector quantities represent unit vectors in the x, y, and z

directions, respectively. This represents the velocity defined in the model
coordinate system. The velocity defined in the tunnel coordinate system (x;,

y1. z axes in figure 1) would be represented generally as

where the €, , €, , €, quantities are the unit vectors in the tunnel system

coordinate directions. In general, the two coordinate systems have the same
origin, but the axes are not coincident. By successive rotations (similar to
Euler rotations), the transformation equations between the tunnel and the

model at sideslip, angle of attack, and/or roll can be obtained.

Beginning with the x, y1, z1 axes in figure 1, a rotation is made about
the z) axis (sideslip, f). As shown in figure 2, the relationship between the

respective unit vectors can be represented by

11



€, =€, cosp-¢, sinf
é, =¢, sinf+e  cospP,
Zy = ezz
or in matrix form, o o

€, cosp —-sinf O €,
€, |=|sinpf cosp Ofe€,

é 0 0 lie
Z2

A subsequent rotation (figure 3) about the y2 axis (angle of attack, o) yields,

€,, =€, cosa+é, sina
y s eYz = eYs ’
é, =-€, sina+é, cosa
or, ,
€, cosaa O sina] €,
e, = 0 1 0 (e,
é -sina O cosaleé

Zg Z3

&, =&
€, =€, cosdp-¢€, sing,
€, =€ sing+¢€, cosod
or, .
€, 1 O 0 &,
€,, |=|0 cos¢ -sing|e, |.
é O sin¢ cos¢ Jle,

Z3

12



The relationship between the unit vectors in the tunnel coordinate system
(x1.¥1.21) and those in the model system (x,y,2) is, by substitution for

intermediate unit vectors, the product of the three matricies.

€., €, cosp -sinf OJ cosa O sina]l O o Tle,
€, |=|€&, |=|sinB cosp O 0 1 O (|0 cos¢p -sing|fé
é,, é, 0 0 1||-sinc O cosaj|O sin¢ cosd Jle

Therefore, the relationship between the velocity vectors is

u, cosfp -sinf Of cosaa O sinall O 0 u
v, |=|sinfp cosfp O 0 1 O ||O cosd -sin¢| v |,
w, 0 0 l1[[-sina O cosa O sin¢ cos¢ ||w

or in shorthand form,

v [=[a]B]C u] [Du]

Since the desired result will be in the model coordinate system, the

inverse process will be used. This process is defined by

=[e,] [B,] [Au] [Du] (3)

Utilizing the rule that the product of a matrix and it's inverse equals the
identity matrix, the terms in each rotation matrix were determined. The

first equation, for sideslip, is shown below.

13



cosfp -sinf Ofa,, a, aj; 1 0O
sinf cosfp Ofa, a, a,|=|/0 1 Of
o 0 lja, a; a, 0 01

Multiplying the terms to form nine equations, the ajj terms were

determined. The solution matrix for sideslip, ay, is

cosfp sinf O
-sinf cosf O]
0 o 1

The above inverse matrix, ay, was verified by multiplying it by the original,

Ajj, matrix to yield the identity matrix.

The transformation matrix for angle of attack was derived using the

following equation.

cosaa O sinab,, b, by, 1 00
0 1 O (b, by, by(=|]01 0
-sino. O coso| b, by by, 0 01

The solution matrix for angle of attack, by, is

cosa O -sina
0 1 0
sina O coso

| Finally, the transformation matrix for model roll was obtained using

14



1 0 0 ¢, €2 Cp

1 00
O cos¢ -sind|c, €y Cp|=|0 1 O
O sing cos¢ ||C; Ca Cay 0 01

The transformation matrix for roll, ¢y, is

1 0 0
0O cos¢ sing|.
0 -sin¢ cos¢

The resulting full transformation from the tunnel to body coordinate system

is given by equation (3) as

u 1 0o O Jcosoo O -sinal|f cosp sinf Of u,
v|=|{0 cos¢ singjj O 1 0 -sinfB cosf Of v, |.
w 0 -sin¢ cos¢jsina O cosa 0o 0 1jw

t

The three separate matricies can be combined to form a single matrix for

the three body rotations.

u cosacosf cososinf -sina | u,
v |=|sinacosPsing —sinfcos¢ sinasinPsin¢+cospBcosd¢ cosasing || v,
w sino.cosPcos¢+sinPsin¢ sinosinfcosé-cosfsing cosacosé | w,

or in short form,
u u, u,

v =[Du]_l v, =[d,j] v, | (4)
w w, w,

15



Since the total instantaneous velocities are the sum of a mean and an

instantaneous fluctuating velocity,

u=u+u'
v=v+v'
W=w+w

then the following transformations exist.

v v :
vi=[d4,] v | . (5)
W W, : '
u' u,’

v'=th{

w' w,'

From the definition of the Reynolds normal and shear stresses,

N
Zuiui
uu'==l_—

—uu

(6)

and

N
Zuivi
—isl Gy

N ' (7)
where u; and vj are total instantaneous velocity values. Substituting the

matrix equations (4) and (5) for the u; and u values into equation (6) yields

the following transformation equation for the u'u’ Reynolds normal stress.
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N d, d,uu, +d,d,uv, +d,d,;uw,
Z +d,.d,,vau, +d,,d,,v,v, +d,,d,;v,w,
i=1

- +d,,d,,w,u, +d,,d,,wv, +d,,d,;w,w,

N

d,d,,uu, +d, d,u,v, +d,d;;u,w,
- +dl2dllvlut + d12(112 VeVt d12d13Va w,

+d,,d,, w,u, +d,d, w, v, +ddwow,

Substituting for the uj, vj, U, and ¥V quantities in equation (7) from equations
(4) and (5) gives the transformation equation for the u'v' Reynolds shear

stress.

v [dudzuu, +d dyyu v, +d; dyu,w,
z +d),d,, v, u, +d)pdyy v v, +djpdysvew,
- +d,,d, wou, +d,dywev, +ddyww,
——— N — ]
d, d;u,u, +d,,d,, uv, + dndzautVt

c
<

- +d,,d;, v, u, +d,d,yp v, v, +djpdy v oWy

+d,;d;, wou, +d,dy, w, v, +d;dysw, W,

Similar types of derivations were done for the other two normal
stresses and two shear stresses, and are not shown here. Using the rule that
the summation of a sum of terms equals the sum of the summations of the
individual terms (Y (a+b+c)=Y a+Y b+ c) and rearranging terms
yields transformation equations that are a function of normal and shear
stresses in the tunnel coordinate system. The result is a set of
transformation equations that are expressed as the following matrix

equation.

17



[uw' | [dpdy; dipdip digdyg 2d;,dyy 2d,,d;3 2d2d;; Ju o]
vy dy,dy; dgadyy diades 2d,,dy; 2d,,dys 2d,,d,; vy
w'w' _ djds; dgpdae daadas 2d3,da; 2d3,dgs 2d3;d3, wwy
u'v d, dy, dipdgy djadyy  dpdgy +dipdy,  dyydoy +di3dy;  djpdys +digdys | U
wu' dsd,, dgpd;; daad;y dgdyp +dgedy;  dydis+dgady; dsedis +dagdie | w'u’

| VW' | dgydy,; dyyds, dggdgy dg day +dgpds; dgydag +dgads; dpodss + dz:sdsz__ viw'

In an uncertainty analysis, the contribution of the bias and precision
limits of each variable determines the total uncertainty of the result. Clearly,
each resultant Reynolds stress error term can be can be a function of up to
nine vanables These are the six tunnel systern stresses plus ‘the three S

rotation angles in the dij matricies. For simplicity, we will consider the most
common case where a # 0 and p =¢ = 0. The resulting transformation matrix

for the mean velocities is
cosoo O -sina

[4,]=] o 1 o |
sinoo O cosa

and for the Reynolds normal and shear stresses,

wu'| [ cos’a O sin® o 0 —2cosasinoe O |[u,u, |
vV 0 1 0 0 0 0 v, v,
ww | | sinfa 0  cos’a 0  2cosasina 0 |[w/ w'
av'| | o 0 0 cos o 0 - -sina || u,'v,'
wu | |cosasina O =cosasina O cos’a-sin’a O | w/u/
vw' | | O 0 0 sina 0 cosa || v,'w,'

18



The resulting equations for the transformed mean and instantaneous

fluctuating velocities are

4 =u,coso-w,sino
¥=v, :
W =u, sina + w, coso.

and
u'=u,'cosa—-w,'sina
v|= vt|

w'=uy,'sino+w, 'cosa

The transformation equations for the Reynolds stresses are

uu =u, u, cos’a+w, w, sin’a-2w,'u,'cosasino

- _ T
vivi=v, v,

ww =u,u, sina+w, w, 'cos’a+2w,'u, 'cosasina

u'v'=u,'v,/'cosa-v, 'w, 'sino

(8)

(9)

w'u'= u“ut'cosmsinoz—wt'w,'cosmsinowwt'ut'(coszoc—sin2 a)y. (10)

vw'=u,'v,'sina+v,'w, 'cosa

The transformed rms fluctuating velocities Urms. Vrms. and Wrms are

calculated as the square root of the transformed u'u’, v'v', and w'w’,

respectively, after transformation. This is done since, for example,

1/2

19
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Also, therefore, ,
vrms = UV|V',
W = Vw'w'

The transformation equations for the rms velocity fluctuations involve the

square root of transformation equations (9) for u'u', v'v', and w'w'.
These equations contain Reynolds normal and shear stresses in the tunnel

coordinate system (see equations (9)). However, according to equation (11),

u,u’'=u,_*%andalso v/'v'=v, ?and w'w,'=w, *. Therefore, using

equations (9) and (11),

] 11 ° /2
u_ =Vuou = (utm2 cos’a+w, ?sin’a-2w,'u, cosasina)

Vrms=\/V'V'=\th'V(' ?.(12)

1 L

: e s . 1/2
W .= YVW'W' = (utrm_zsxn20c+wtmzcoszoc+2wl u, cosocsmoc)

J

Propagation of Uncertainty into the Model Coordinate System

Refering to the transformation equations (8) for the mean velocities,
the equations for the propagation of the bias limits and precision indices

(errors) can be derived using equations (2). Since

v=v,,

and

and, for example,

20



the propagated bias limits and precision errors for the v mean velocities are

equal to those for the measured quantities.

That is,
B. = B;:, and S; = SVT.

For the T and W velocity components, the bias limit equations become (from

equations (2))

—_— 2 —_ 2 -_— 2
ou du Ju
B—2 = —_=B— —_'_—B— ——-_—B—
! (aut u') +(8Wt w'j +(a°‘ a)

duodu, pp_u
BU, wt tWe  u, Wy

and

The bias limit in o was +0.226° (+0.004 rad). The assumption is made that
the errors in the measurements of the variables ut, wt, and o are

independent. The cross terms drop out (p,w, =Pue =Pwa = 0), resulting in

(from equations (8))

B = (cosa Bl-,:)2 + (—sina BWT)Z +(-u,sina —W;cosoz)2 B.? and,

2

B’ = (sinoc BE)Z +(cosa Bw:) +(u, cosa —W:sinoc)2 B.%.

21



Similarly, for the precision errors,

S_* = (cosoc Sa:)2 + (—sina Sw—l)2. and

S_? = (sinoc Su_t)2 + (cosa Sw—‘)z.

The uncertainty in the angle a is limited to the bias limit only.

As before, the total uncertainty is then calculated as

The transformed rms fluctuating velocities were calculated as the
square root of the transformed Reynolds normal stresses (equations (12)).
Therefore, similar to the mean velocities, the bias and precision errors in

Vrms quantities were

The u and w rms fluctuating velocities were given by the transformation

equations (12). Cross terms are provided for the

u,__and w,'u,’,and w, and w,'u,’ pairs since they are related in the

w,'u,' covariances. Assuming errors in measurements of

22



u, ,w, ,ando, were independent (eliminating those cross terms), the

equations for the bias limits were derived from

2 2 2 2
ou ou ou Ju
B 2 _ ms 3 + ms B + ms_ B __ +( ms B )
o (autms s ] (awt s ] (awt lul' b ) do .

s

+ ms || __—__ms_ |3 B+ rms ms_ |B B
(autm‘s ]( awt ! u( |j Wenns  Wy'uy (awlrms ][ awt Y ut l] Wiins w, l-l_‘
2
B 2 = + awrms B 2+(awrmsB )2
Wons a]_l tm Wtrm awt Y u( T wiug _aa «

ow ow ow
B B rms ms B B
+{aut ]( ) Yemms WUy’ [awtm ](awl'u['} Weme W'ty

The assumption is made that the elements in the cross terms are perfectly

and

correlated, giving correlation coeffcients of one. This assumption, yielding
conservative uncertainty estimates, will be adopted in all further

developments.

Inserting the appropriate terms in the above equations and

performing some algebraic manipulation yields

2 2 . 9 2 2
u COoS™ o w sSin” o —cosasino
Buﬂm2 = ( t"“’u Butm.. ) +( t"':] Bwtm ] +( u Bwt'ut'

rms ms rms

2

+[cosasina(wtm2—utm2) w,'u,'(1-2sin’ a)] uB"

rms

2

2 2
u, cos“a ) —cosasina w, sin"o ) —cosasino
+ B“t Bw uy’ + Ny BW: Bw"u"
urms urms i ' u u i

rms

and

23



i 2 2 2 2 . 2
B 2= u,  Ssin OV.B 4 w,  COS OLB + COS(XSII’I(XB
Wims wms Wiins w Wiims w WQ'U('

ms ms

2
+ [cosoc sin oc(ut"m2

- th,2)+ w,'u, '(1 - 2sin?® oc)]2 B, 5

w

rms

2 : ' 2 :
+ u, sino ) cosasino B B + W, . €COS" Q| cosasina B B
Woms Woms Utems Wity W e w Wims W' U’

rms

The precision errors were defined by

2 2

2
S 2 _ a"ll'ms S al‘lrms S + aLlx'ms
Ums a u, Wy, 0 T w uy
1_1t s lrm‘ ™ms a‘Nt u‘ t t
/ ’
+ aurms aurms aul’ms a"lrms S
au,m an lul ' Hirme WUy an awt 'ul' trms Wi U]
and
2 2 2
g Z- OW N OW . N OW s o
W ma du, Htrms ow, s ow,'u ' W™

The resulting equations for the precision errors in the urms and Wrms

quantities are

g 2 2 2 2
u, cos' o w, sin“o —cosasina
su 2 _ (.Jm-_—_su( ] +(_.‘_m'___sw( J +( Sw T
mma u mas u ms u t it

ms rms ms

2 ' ‘2 . ’
+ u,_cos"a ) —cososina S S + w, . Sin“a\ —cosasina s s
u u Utrms W'ty u u Wirms Wy 'Ug'
ms ms

ms ms

and

24



ot i

.2 2 2 2 2
u, Ssin“a W, COS“Q cososino
2 Lrms Lems -
Swm = ————-Sul + ———Sw' + Sw —
Wrms e Wrms i W ' '

mms
.2 2 ’
u, Ssm a) cososino W, COSs"Q | cososino
4| toms S, S_— +|—m S, S.——
w w tms Wi Wy wW W tms W Uy

rms rms ms ms

The bias limits and precision errors for the Reynolds normal stresses

were calculated using the transformation equations (9). Again, since

the bias limits and precision error estimates for v'v' were derived as

B_. =B, and S = S

. (4
Vi Vi

Assuming that the errors in the measurements of u,'u,, w,/'w ,and a
are independent for this quantity (eliminating those cross terms), the

equationsr for the bias limits in u'u' can be derived from

1 1 2 ) 1 2 1] ] 2 1 ] 2
B - auuB” N auulB'. + Buu'B” +auuBa
wu du,'u,’ "™ ow,'w, W™ ow,'u,' W ao

+E)u‘u Jou'u B_ B+ Ju'u au'u'B'BH
aut ut' awllut' St T aWt'Wt' awt u, e M

Based on the transformation equation (9) for the u'u' Reynolds normal

stress, the bias limit is

25



2 2
B_,_,Qz(coszocB.—,) +(sin2aB : ) +(—2005asinaB
u'u uyuy W W,

2
wt'u")

+[2 cosasina(w,'w, —u, u,)-2w, u,(1-2sin’ oc)]2 B’

-2 cosasin oz(cos2 o B B_—— +sino B
t 1

uguy W Wy’ W('ut')

The bias limit in w'w’ can be formulated from

— 2 — 2 — 2 —_ 2
B 2=|9WWp |,foww g |, fowwy NELASYY
wiw Ju, 'u,’ U™ ow,'w,' WV ow, 'u, " W™ a0,

+aww aWWB,,B,_+aWW aWWB..B..
aut 'Ilg' awt 'Utl u,'u, W, uy awt|w aw('utl W, W WUy

Using the transformation equation for w'w' from equation (9), the bias limit

is expressed as

2 2 2
B__*= (sin2 o B—T—-.) + (cos2 o Bf) +(2 cosasino B__)
w'w u,'uy W, W, w

Dwenr
¢ Uy

+[2 cosasino(u,'u,' - w,'w,')+2w, 1, (1 -2sin’ a)r B2

+2 cos o sin oc(sin2 aoB—B__ +cos’a B

u ug Wy We Wy Wy “t)

The precision indicies had a similar form, without the o terms, given as,

S’ = (cos2 a SW)Z + (sin2 o S )2 + (—2 cosasino S—— )2

W, 'uy

-2 cosasin oc(cos”' O SomSp + sin’a S_—_S )

uy'uy’ cWe T Wy

and,
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w'w

2 2 2
2= (sin2 o S—,—.) +(cos2 o Sf) +(2cosocsinoc S———)
u, 'u, w, W,

wylug”

+2 cos o sin U,(Sin2 0 S_——S_—— + cos?a S
t t

ut.ul' Wt'W" wt-u',)

The uncertainty analysis for the Reynolds shear stresses was based on
the transformation equations (10). In this case, the LDV velocity

measurements were required to be made from the same seeding particle for

correlation of velocity fluctuations. Therefore, the u'v', and v'w' stresses
each had a third, cross term in their expressions for bias limits and
precision errors. The w'u’ stresses had two cross terms. The equations for

determination of the bias limits for the three shear stresses can be derived

from
— 2 —_ 2 S 2
B_%= auvBH 4 ou'v auvBm
u'v aut 'vt' u, 'vy th'Wt' VW, aa
+[ aulv J( au"v .]Bu _B__
ou,'v,' \ov,'w, AL
-— 2 - 2 — 2
B 2= ava 4 ov'w avaa
v Ju,'v,' "M ov,'w, ' "™ oo
ov'w' ov'w' ’
B
+(8u(‘vt')(avt'wt‘) Ve Ve W
and

+awu _a_z_l_l_'B”B‘* awlu| aw'uB'B”'
ou,'u,' \ow, u,' ) ww ow,'w,' \dw,'u, ) T e
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The equations for the bias limits are as follows.

t

2 2
B__? = (cosoc B?) +(—sinoc Bﬁ)
uv U, vy VW

; P — 2
+(-u,'v/'sina-v,'w cosa) B,?,

B

vy v wyt

—cososina B

2
B’ = (sinoc B—,-—.) +(coscx B
w u, vy

2
vy 'w,')

3 2 )
+(u, v cosa-v 'w sina) B’

+cososina B

vy vy 'wy’

and

2 _(sin2a ? (-sin2a ¥ ,
Bow =|—3 B | *|—5  Bawr +[(1—25m o)B

2
w"u(']

2
+ sin4o sin4a
4 W wya,” 4 Wy'wy T w eyt

+ [(1 -2sin*a)(u,u, - w,'w.')-w,u, (2sin 20()]2 B,’

a

The precision error equations were determined from the following

relationships.
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The resulting equations for the precision error estmates are,

SW2 _ (coscx SW)Q +(—sinoc Sv._'wT)z
S

U Ve VW

—-cososino S

2 2
S__? =(sinoc S——.——.) +(cosocS . )
vw Uy Ve Vi W
+cosasinaS—S

ug'vy' v wy!

2 sin2o 2 (—sin2a 2 .9 2
Sew =| 75 Samr | H g Serwr +[(1——2s1n oc)Sw‘,ul_]
+sin4ocq « __sin4ocq

DO
4 ag'ug T owy

Q

wJ T Band 0 g
4 W W Weu

Example calculation. The calculation of the bias limit in the LV:

nondimensional shear stress is presented in this section. The equation for

estimating this error is listed below.

B

2 2
— =(sinoc Bf) +(cosa B )
v'w u, v, VW,
T by p 2n 2
+(u, v, 'cosa - v,'w, 'sina) B

o
+ cososino B B

u, vy Vewy

All velocity quantities used in this equation were nondimensionalized by U..2

yielding the bias limit in the nondimensional shear stress. The angle o is
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25°. The bias limit in this angle, Bq, is £0.226° (+0.004 rad). The bias limits
u,'v, v,'W,
U.? U,

in

and > were obtained from table lc¢ and are +0.0000029 and

+0.0000012, respectively. Average measured values of = Z" and 1 “,j*‘ were
U U

3 oo

used and they were 0.0029 and 0.0016, respectively. (If this analysis was
being done on a point-by-point basis, the values at the particular point in the
tunnel would be used.) The four terms, in order of their appearance in the
bias error equation, are 1.50 X 10-12, 1.18 X 10-12, 6.10 X 10-11, and 1.33 X
10 -12, The total bias limit is £0.0000081. Clearly, the third term dominates
this error, which is the error in the angle of attack measurement. This
result is typical of most systems, and better accuracy in angle of attack

measurement will have the greatest effect in reducing this bias error.

This concludes the discussion of the propagation of uncertainty for the
calculated quantities. The tabulated results for all of the transformed, final
quantities in the model coordinate system are given in tables 2a, 2b, and 2c.
All transformed quantities were normalized by the appropriate terms, as
shown in the tables. In all cases where cross terms existed in the error
equations, the sign of the correlation coefficient was unknown. It was

therefore assumed to be the sign that would maximize the error estimate.

Analysis of Uncertainty Results

The significance of the final uncertainty results can be examined by
comparing them to values in the tunnel coordinate system. The uncertainty
results relative to the results in the tunnel coordinate system showed

changes in all quantities associated with the u and w velocity components.
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Since the effect of angle of attack, o, was the only effect examined, and the u
and w vectors only are affected by a rotations, all v-only related quantities
remained unchanged. All quantities associated with the w-related variables

showed the largest differences from the values in the tunnel system.

In general, bias limits and precision errors in the six Reynolds

—
1 L}

stresses increased, except for the errors in XU—V— which did not change.

There was a slight decrease in uncertainty in the urmg fluctuating velocity
due to decreases in bias limit and precision error. The uncertainty in the
wrms fluctuating velocity increased primarily due to an increase in bias limit.
Bias limit increases offset precision error decreases in the mean u velocity.

Both errors increased for the mean w velocity.

To address the effect of model sideslip and/or roll on uncertainties in
the mean velocities, the full transformation in equation (4) would be used to
formulate the transformation equations. The number of variables in the bias
error propagation equations would increase by the number of additional
angular rotations applied to the model. To evaluate the effect on rms
fluctuating velocities and the Reynolds stresses, sequential application of the
angular rotations would reduce complexity. Although not proven here, it is
assumed that this would involve developing the propagation equations for
each angle separately, setting the other angles equal to zero. The equations
for each angular rotation would then be applied separately to each

succeeding result.
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Conclusions

An analysis of the propagation of estimated experimental LDV data
uncertainties from the tunnel coordinate system to the model system has
been presented. Transforming from one Cartesian coordinate system to
another by three sequential rotations, equations were developed to
transform the variables initially obtained in the original coordinates into
variables in the final coordinate system. Based on the transformation
equations, propagation equations for errors in the experimentally-derived
flow quantities were derived Vfor a model at anglé of attack. Experimental
uncertainties were then propagated from the tunnel coordinate system into
the model system.

Comparisons between results for the two systems revealed a variety of
increases and decreases in bias and precision estimates. Quantities
associated with the w-related variables primarily increased and showed the
largest differences from the values in the tunnel system. In some cases, u-
related quantities decreased after transformation, or did not change
significantly.

Calculations of uncertainties as functions of the variables that comprise
the experimental results allows assessment of the contribution each variable
makes. Such an analysis enables and necessitates the experimentalists to
identify and address the contributing error sources in the experimental
measurement system. This provides an opportunity to improve the quality of
data derived from experimental systems. This is especially importanf in
experiments where small changes in test conditions are expected to _
produce small, detectable changes in results. In addition, the need for high-
quality experimental data for CFD method validation demands a thorough

assessment of experimental uncertainty.
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Table 1a

Uncertainty Estimates for Results in Tunnel Coordinate System-

Mean and Fluctuating (rms) Velocities

u, /U,
Strake Test
Bias +.0101/
-.0112
Precision +.00168
Total +.011/
Uncert. -.012

(U=3 in/sec)

v /U

+.0254/
-.0281

+.00888

+.031/

-.033

35

w, /U,
+.00822/
-.00957

+.00110

+.0085/

-.0098

(Reference 3 - Strake Test)

u?/U. +v.2/U.,

+.00195 +.0119
+.00119 +.0060
+.0031 +.017

w,? /U,

+.00441

+.000775

$.0047



Table 1b

Uncertainty Estimates for Results in Tunnel Coordinate System-
Reynolds Normal Stresses
(Reference 3 - Strake Test)
(Uw=3 in/sec)

mu /U NV /U wow, /U

oo

Strake Test
Bias 0 +.0000513 0
Precision +.000056 +.00149 +.000024
Total +.000056 +.0030 +.000024
uncert.

36



Table 1c

Uncertainty Estimates for Results in Tunnel Coordinate System-
Reynolds Shear Stresses
(Reference 3 - Strake Test)
(Ue=3 in/sec)

u/v, /UL vw /UL wiu /UL

Strake Testi
Bias +.0000029 +.0000012 0
Precis. +.00012 +.000066 +,000020
Total +.00024 +.00013 +.000020
uncert.
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Table 2a

Uncertainty Estimates for Results in Model Coordinate System-

Mean and Fluctuating (rms) Velocities

u/U,
Strake Test
Bias +.0110/
-.0120
Precision +.00159
Total +.011/
Uncert. -.012

(Referency:er 3 - Strake Test)

(Uw=3 in/sec)

v/U.  w/U. u?zsju. vEsul

+.0254/ +.00909/ +.00181 +.0119
-.0281 -.0103

+.00888 +.00122 +.00117 +.0060
+.031/ +.0094/ +.0030 +.017
-.033 -011

38

Vw? /U,
.t.OOS46

+.000771

+.0057

e




Table 2b

Uncertainty Estimates for Results in Model Coordinate System-
Reynolds Normal Stresses
(Reference 3 - Strake Test)
(U=3 in/sec)

u'u'/U‘,Zo v'v'/Uz, W'W'/Ug,
Strake Test
Bias +.0000110 +.0000513 +.0000110

Precision  +.000059 +.00149 +.0000322

Total +.00012 +.0030 +.000065

uncert.
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Table 2¢

Reynolds Shear Stresses -

(Reference 3 - Strake Test)
(U.=3 in/sec)

Strake Test
Bias

Precis.

Total

uncert.

+.00025

40

v'w’/Ui

+.0000081

+.0000958

+.00019

+.0000009

+.0000339

+.000068

e




Figure 1. Rotations from the Tunnel ( x}, y;. ;) to
Model ( x, y, z) Coordinate System
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Figure 2. Rotations from the Tunnel ( x}, y;, z)) to
X,. ¥, 2z, Coordinate System
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Figure 3. Rotations from the x,.y,. z, to

X3, V3 . Z3 Coordinate System
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>z,

Figure 4. Rotations from the x5, y3. 2, to
Model (x , y, z) Coordinate System
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